Internalization and recycling of transferrin and its receptor. Effect of trifluoperazine on recycling in human erythroleukemic cells.
نویسندگان
چکیده
When human erythroleukemic (K562) cells were incubated with 25 microM trifluoperazine (TFP), a drug that inhibits both calmodulin-dependent and calcium-activated phospholipid-dependent kinases, the number of transferrin receptors detected on the cell surface was reduced to approximately half with no change in the affinity of the remaining surface receptors. Removal of the TFP from the incubation medium reversed the loss of surface receptors and they returned to the cell surface in an apparently synchronous manner. As a result, the number of receptors detected on the cell surface exceeded the original level but later returned to normal. Measurements of the total number of receptors available to transferrin in TFP-treated cells suggested that the lost receptors were not participating in the internalization and recycling pathway but instead were probably trapped at an intracellular location. However, those receptors that remained on the cell surface continued to internalize transferrin and to recycle apotransferrin to the cell surface albeit more slowly than in cells that had not been treated with TFP. Using transferrin that had been labeled with iron-59, it was found that although iron uptake was reduced in line with the diminished number of surface receptors, iron still accumulated within TFP-treated cells, suggesting that in the presence of the drug, transferrin-transferrin receptor complexes continued to migrate through an intracellular compartment that contained a low pH.
منابع مشابه
Rab22a regulates the sorting of transferrin to recycling endosomes.
Rab22a is a member of the Rab family of small GTPases that localizes in the endocytic pathway. In CHO cells, expression of canine Rab22a (cRab22a) causes a dramatic enlargement of early endocytic compartments. We wondered whether transferrin recycling is altered in these cells. Expression of the wild-type protein and a GTP hydrolysis-deficient mutant led to the redistribution of transferrin rec...
متن کاملRegulation of transferrin receptor recycling by protein phosphorylation.
The effect of the protein phosphatase inhibitor okadaic acid on transferrin receptor internalization and recycling was examined in HeLa and K562 cells. Okadaic acid inhibited receptor uptake by more than 85% in both cell lines, whereas it affected transferrin recycling to differing degrees: recycling in HeLa cells was inhibited by greater than 90%, compared with only 65% in K562 cells. Okadaic ...
متن کاملTBC1D16 is a Rab4A GTPase activating protein that regulates receptor recycling and EGF receptor signaling.
Rab4A is a master regulator of receptor recycling from endocytic compartments to the plasma membrane. The protein TBC1D16 is up-regulated in melanoma, and TBC1D16-overexpressing melanoma cells are dependent on TBC1D16. We show here that TBC1D16 enhances the intrinsic rate of GTP hydrolysis by Rab4A. TBC1D16 is both cytosolic and membrane associated; the membrane-associated pool colocalizes with...
متن کاملThe HSP90 inhibitor geldanamycin perturbs endosomal structure and drives recycling ErbB2 and transferrin to modified MVBs/lysosomal compartments
The ErbB2 receptor is a clinically validated cancer target whose internalization and trafficking mechanisms remain poorly understood. HSP90 inhibitors, such as geldanamycin (GA), have been developed to target the receptor to degradation or to modulate downstream signaling. Despite intense investigations, the entry route and postendocytic sorting of ErbB2 upon GA stimulation have remained contro...
متن کاملInsect lipoprotein follows a transferrin-like recycling pathway that is mediated by the insect LDL receptor homologue.
The lipoprotein of insects, high-density lipophorin (HDLp), is homologous to that of mammalian low-density lipoprotein (LDL) with respect to its apolipoprotein structure. Moreover, an endocytic receptor for HDLp has been identified (insect lipophorin receptor, iLR) that is homologus to the LDL receptor. We transfected LDL-receptor-expressing CHO cells with iLR cDNA to study the endocytic uptake...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 261 8 شماره
صفحات -
تاریخ انتشار 1986